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Abstract:  The method of combining significant details from two or more source images of a scene into a final fused image is known 

as Image Fusion. When compared to any of the other input images, the fused output image will have more detailed information in it. 

The objective of image fusion is to obtain the most desirable data from each image. Elementary requirement for image fusion is that 

fusion process should comprise all appropriate information with concentrated noise and it should not introduce any artifact in the 

fused image.  

The objective of this work deals with the edge detection approach for multi-focused images by means of complex wavelets-based 

image fusion. Many of the existing fusion algorithms extract the high-frequency and low-frequency information by designing some 

filters and then adopt different fusion rules to obtain the fused image. This study presumes that Discrete Wavelet Transform is one 

of the best and most effective algorithms for Image Fusion. So a wavelet is used for the multiscale decomposition of the source and 

fused images to obtain high-frequency and low-frequency images. To acquire more clear and complete fused image as result, deep 

convolutional neural network is used to learn the direct mapping between high-frequency and low-frequency images of the source 

and fused images. 

Index Terms – Image Fusion, Deep Learning, Wavelet Transform, CNN, DWT, Multi-focus image. 

Introduction 

Image fusion is the only possible way to repossess corresponding information from different imaging modalities. Elementary 

requirement for image fusion is that fusion process should comprise all appropriate information with concentrated noise and it should 

not introduce any artifact in the fused image. Pixel level fusion, Feature level fusion and Decision level fusion are the three major 

types of image fusion. At the pixel level, the pixel of the first image is already registered and related to the second image in the 

database and then the same pixel from the second image is analyzed. At the feature level, the feature of any object in the image is 

matched with the object from another image and then the features are fused to get a new better image. And at the decision level, both 

the images are analyzed separately and the information regarding each of the image, say feature and characteristics, are stored and 

then that collected information is fused to get a new complete and fused image. Most of the image fusion algorithms are focused on 

pixel level image fusion as it is simple and computationally efficient. Pixel level fusion techniques are variable from simple spatial 

domain techniques to transform domain techniques.  

The key problem of image fusion is how to extract the salient features from the source images and how to combine them to generate 

the fused image. For decades, many signal processing methods have been applied in the image fusion field to extract image features, 

such as discrete wavelet transform(DWT), contourlet transform, shift-invariant shearlet transform and quaternion wavelet transform 

etc. [1]. 

Currently deep learning has gained many breakthroughs in various computer vision and image processing problems, such as 

classification, segmentation, super-resolution and many more. In the field of image fusion, the study based on deep learning has also 

become a very active topic in last few years. A variety of deep learning based image fusion methods have been proposed for digital 

photography (e.g. multi-focus image fusion, multi-exposure image fusion), multi-modality imaging (e.g. medical image fusion, 

infrared/visible image fusion) [2]. The realization of multi-focus image fusion is of practical significance. The focus range of the 

visible light imaging system on the target area is limited by the depth of field of the optical system. In an image that is generated for 

the same scene, only the vicinity of the focus is clear and other objects are blurred to varying degrees. Multifocus image fusion 

technology can fuse differently focused images to generate a single image and combine some objects or information to obtain a more 

accurate description. Multifocus image fusion can overcome the limitations of a single sensor in terms of spatial resolution, geometry, 

and spectrum to improve the reliability of image processing [3], such as through feature extraction, object recognition, edge detection 

and image segmentation. Multifocus image fusion technology has been widely used in remote sensing, medical imaging, military, 

transportation and machine vision. The fused image obtained by the image fusion method based on the transformation domain is 

usually accompanied by image distortion and other phenomena. Therefore, determining a new multi-focus image fusion algorithm 

has important theoretical significance and practical value. The key to multi-focus image fusion is to extract the information of the 

clear part of the two images for fusion processing. In this work the deep learning method is used to learn the direct mapping between 

the source image and the fused image. The deep convolutional neural network is used to train the clear image and its corresponding 

blurred image to encode the mapping. The fusion rules of multi-focus images can be generated through CNN model learning. On the 

basis of this idea, wavelet transform is also used in this work to extract the high-frequency and low-frequency information of the 

image and inversely transforms the fused high-frequency and low-frequency information into the fused image. The low-frequency 

sub-band of the image contains the key features of the image and the high-frequency sub-band of the image contains the detailed 

information of the image, which is related to the sharpness of the image. A convolutional neural network is used to learn the direct 

mapping between the high-frequency and low-frequency sub-bands of the source of the source and fused images, respectively [4] 

and obtain the fusion rules of the low-frequency and high-frequency sub-bands. These rules determine the low-frequency and high-

frequency information of the fused image [5]. For supervised image classification, a conventional CNN consists of: 1) Convolutional 

layers for feature/representation learning, which utilize local connections and shared weights of the convolutional kernels followed 

by pooling operators, resulting in translation invariant features and 2) fully connected layers for classification, which use high-level 
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image features extracted from the convolutional layers as input to learn the complex mapping between image features and labels. 

CNN is a suitable platform to test and compare the different fusion strategies as we can customize the fusion location in the network 

structure: either at the convolutional layers, fully connected layers, or network output [6]. 

I. RELATED WORK 

Image fusion can be classified into three levels: pixel level fusion, feature level fusion and decision level fusion. The pixel level 

fusion involves comprehensive processing using the pixel values of the image. The pixel level based methods of image fusion can 

be categorized in two categories as spatial domain based image fusion methods and transformation based image fusion methods. The 

image fusion methods based on the spatial domain includes selecting the pixels of clearly visible parts of the images to form a 

completely visible fused image. Transformation based image fusion methods generally decompose the original image into different 

coefficients and then they fuse these transformation coefficients by the corresponding fusion rules and finally acquire the fused image 

by reconstruction of the fusion coefficients. The spatial domain based approach has the advantage of directly fusing the focal region 

of the source image; however, this method of image fusion is highly dependent on the choice of clear measurement criteria, such as 

gradient energy, spatial frequency or standard deviation of the image. Since the structure information cannot be represented by a 

single pixel, the spatial domain based fusion methods require efficient extraction of the focus area from the source image [5]. 

Second, the feature level based methods depend on synthetic features and structural characteristics of images, such as edges, corner 

points, and textures to segment the image or get a target distribution information from a local area of image. Then, information from 

the source images will be extracted and combined by applying certain fusion rules. The representative methods are based on object 

detection, edge extraction, image segmentation etc. The feature level based image fusion methods require a manual feature selection, 

as well as a manually designed fusion rule, and the fusion performance very much depends on the features and fusion rules. 

Last, the decision level fusion is the most advanced option among the three levels of image fusion, in this a decision is made to 

incorporate the target based on a discriminative information according to a designed fusion rule. The fusion strategy is based on 

learning-based classifiers that generally quantify the reliability of classification. The limitation of decision level image fusion method 

is the high dependency on detection of classification results [7]. 

The existing multi-focus image fusion algorithms, precisely, the image fusion algorithms based on the spatial domain, focus on 

proposing a new model, planning more complex fusion rules, or finding an index to measure the resolution of image pixels or sub-

bocks for guiding image fusion. However, a single image feature cannot be applied suitably to a variability of composite image 

environments, and it is practically impossible to design an ideal fusion model that considers all factors. 

Liu et al. [8] used a deep neural network for multi-focus image fusion, the network that is used is fundamentally a classification 

network, which may direct to an imprecise boundary between the focused and unfocused regions of the image. Xu et al. [34] 

attempted to use images with different focus for end-to-end mapping and establish many-to-one mapping between the source and 

output images, a full convolutional dual-stream network architecture was designed to realize pixel-level image fusion. Zhao et al. 

[10] proposed the use of a multilevel deep supervised convolutional neural network for multi-focus image fusion and the design of 

an end-to-end network, through which joint generation feature extraction, fusion rules, and image fusion could be learned. Zhao et 

al. [10] constructed a new model to fuse the captured low frequency features with high frequency features, the features of wavelet 

multiscale transformation were also used to decompose the image in low frequency and high frequency domains. Minguri et al. [11] 

developed a pixel-by-pixel convolutional neural network to recognize the focus and defocus pixels in the source image for multi-

focus image fusion according to the neighborhood information. 

In past few year, machine learning algorithms have been widely used in various kind of image fusion, and also achieved success in 

the image fusion field. At first, Yang et al. [12] stated the sparse representation technique to fuse the multi-focus images, in which 

the image patches were represented with an over complete glossary and corresponding sparse coefficients, and then the input images 

were fused through fusing the sparse coefficients of each pair or set of image patches. Deep learning techniques, specifically the 

convolutional neural network (CNN), have took new evolution into the field of image fusion [13]. At first, Liu et al. [14] presented 

CNN to fuse multi-focus images. They formulated multi-focus image fusion as a classification assignment and used CNN to predict 

the focus map, as each pair of image patches could be classified into two categories: 1. First patch was focused and another one was 

blurred and 2. First patch was blurred and another one was focused. Tang et al. [15] proposed a CNN model to learn the effective 

focus measure (i.e., metric for quantifying the sharpness degree of an image or image patch) and then compared the focus measures 

of local image patch pairs of input images to determine the focus map. After that, the above two algorithm processed the focus images 

according to the refined focus maps. Song et al. [16] applied two CNNs to fuse the spatiotemporal satellite images, i.e., large-

resolution MODIS and low-resolution land-sat images. Specifically, they respectively used two CNNs to perform super-resolution 

on the low-resolution land-sat images and extract image features, and then adopted high-pass modulation and weighted strategy to 

reconstruct the fusion image from the extracted features similar to the transform domain image fusion techniques [17]. Even though 

the convolutional neural network models have achieved more or less success in the image fusion field, the current models lack the 

simplification ability and could simply perform well on specific type of images. This problem will nevertheless bring us some trouble 

in developing the CNN based algorithms for fusing images without ground-truth images e.g. CT-MR images and infrared-visual 

images. Moreover, most of the proposed convolutional neural network models are not designed in the end-to-end manner, and thus 

require additional procedures to complete the image fusion. Overall, the CNN based image fusion models have not been fully 

exploited for the image fusion task, thus there is still much space to improve the architectures of the CNN based image fusion models, 

so as to increase their performance and generalization ability. Through comparing the transform domain image fusion algorithms 

and CNN based image generation models, we find there are several similar characteristics between these two kinds of algorithms. 

Primarily, the transform domain algorithms usually extract the image features using various filters like Gaussian filters etc. at the 

beginning, and the CNN models also extract extensive features using large number of convolutional filters. Secondly, the transform 

domain fusion algorithms usually fuse the features through the weighted average strategy, and the CNN models also utilize the 

weighted average strategy to generate the target image. On comparing the transform domain based image fusion and CNN based 

image fusion models, the CNN models have three advantages: 1) the parameters of convolutional filters can be learned to fit the 

image fusion task; 2) the number of convolutional filters is usually much greater than that of the filters in the convolutional transform 

domain algorithms, and thus the convolutional filters could extract more informative image features; 3) the parameters of the CNN 

models can be cooperatively optimized through training them in the end-to-end manner. Liu et al. [19] calculates the three commonly 
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used focus measures (feature extraction) and them feeds them to a three-layer network (input-hidden-output), so the network just 

acts as a classifier for the fusion rule design. As a result of which, the source images must be fused patch by patch. Here, the CNN 

model is simultaneously used for activity level measure (feature extraction) and fusion rule design (classification).  

II. CNN for Image Fusion 

CNN is a deep learning, trainable, multi-stage feed forward artificial neural network, which attempts to learn hierarchical feature 

representation mechanism, and each level of CNN contains a certain number of feature maps corresponding to a level of abstraction 

for features. The operations such as non-linear activation, linear convolution and spatial pooling applied to coefficients are used to 

connect the feature maps at different stages. In past few years, CNN has been successfully introduced into various fields in computer 

vision from high-level tasks to low-level tasks, such as face detection [19], semantic segmentation [20], face recognition [21], super-

resolution [22], patchy comparison [23] etc. These CNN based methods usually overtake the convolutional methods in their 

respective fields, possessing to the fast development of modern powerful GPUs, the great progress on effective training techniques, 

and the easy access to a large amount of image data. This work also benefits from these factors. 

a) Overview 

The basic working diagram of CNN based multi-focus image fusion method is shown in figure 1, in this the main consideration is 

the situation where there are only two pre-registered source images. To deal with more than two multi-focus images, one can fuse 

them one by one in series. From the figure, it is understandable that this method consists of four steps: focus detection, initial 

segmentation, consistency verification and fusion. In the first step, the two source images are fed to a pre-trained CNN model to 

output a score map, which contains the focus information of source images. Predominantly, each coefficient in the score map 

indicates the focus property of a pair of corresponding patches from two source images. Then, a focus map with the same size of 

source images is obtained from the score map by averaging the overlapping patches. In the second step, the focus map is segmented 

into a binary map with a threshold of 0.5. In the third step, refine the binary segmented map with two popular consistency verification 

strategies, namely, small region removal and guided image filtering [24], to generate the final decision map. In the last step, the fused 

image is obtained with the final decision map using the pixel-wise weighted-average strategy. 

Figure 1: 

Diagram of the CNN based Multi-focus Image Fusion Method [8] 

b) Design 

In this work, multi-focus image fusion is viewed as a two-class classification problem. For a pair of image patches {p1, p 2} of the 

same scene, the goal is to learn a CNN whose output is a scalar ranging from 0 to 1. Specifically, the output value should be close to 

1 when p1 is focused while p2 is defocused, and the value should be close to 0 when p2 is defocused while p1 is focused. In other 

words, the output value indicates the focus property of the patch pair. To this end, here employ a large number of patch pairs as 

training examples. Each training example is a patch pair of the same scene. One training example {p 1, p 2} is defined as a positive 

example when p 1 is clearer than p 2, and its label is set to 1. On the contrary, the example is defined as a negative example when p 

2 is clearer than p 1 and the label is set to 0. In practical usage, the source images have arbitrary spatial size. One possible way is to 

apply sliding-window technique to divide the images into overlapping patches, and then input each pair of patches into the network 

to obtain a score. However, considering that there are a large number of repeated convolutional calculations since the patches are 

greatly overlapped, this patch-based manner is very time consuming. Another approach is to input the source images into the network 

as a whole without dividing them into patches, aiming to directly generate a dense prediction map. Since the fully-connected layers 

have fixed dimensions on input and output data, to make it possible, the fully-connected layers should be firstly converted into 

convolutional layers by reshaping parameters. After the conversion, the network only consists of convolutional and max- pooling 

layers, so it can process source images of arbitrary size as a whole to generate dense predictions [25]. As a result, the output of the 

network now is a score map, and each coefficient within it indicates the focus property of a pair of patches in source images. The 

patch size equals to the size of training examples. When the kernel stride of each convolutional layer is one pixel, the stride of 

adjacent patches in source images will be just determined by the number of max-pooling layers in the network. To be more specific, 

the stride is 2 k when there are totally k max-pooling layers and each with a kernel stride of two pixels [20]. 

There are three types of CNN models are presented for patch similarity comparison: siamese, pseudo-siamese and 2-channel. The 

siamese network and pseudo-siamese network both have two branches with the same architectures, and each branch takes one image 

patch as input. The difference between these two networks is the two branches in the former one share the same weights while in the 

latter one do not. Thus, the pseudo-siamese network is more flexible than the siamese one. In the 2-channel network, the two patches 

are concatenated as a 2-channel image to be fed to the network. The 2-channel network just has one trunk without branches. Clearly, 
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for any solution of a siamese or pseudo-siamese network, it can be reshaped to the 2-channel manner, so the 2-channel network 

provides further more flexibility [23]. All the above three types of networks can be adopted in the proposed CNN-based image fusion 

method. In this work, the siamese one is used as here the CNN model mainly for the following two considerations. First, the siamese 

network is more natural to be explained in image fusion tasks. The two branches with same weights demonstrate that the approach 

of feature extraction or activity level measure is exactly the same for two source images, which is a generally recognized manner in 

most image fusion methods. Second, a siamese network is usually easier to be trained than the other two types of networks. As 

mentioned above, the siamese network can be viewed as a special case of the pseudo-siamese one and 2-channel one, so its solution 

space is much smaller than those of the other two types, leading to an easier convergence. Another important issue in network design 

is the selection of input patch size. When the patch size is set to 32 ×32, the classification accuracy of the network is usually higher 

since more image contents are used. However, there are several defects which cannot be ignored using this setting. As is well known, 

the max- pooling layers have important significance to the performance of a convolutional network. When the patch size is 32 ×32, 

the number of max-pooling layers is not easy to determine. More specifically, when there are two or even more max-pooling layers 

in a branch, which means that the stride of patches is at least four pixels, the fusion results tend to suffer from block artifacts. On the 

other hand, when there is only one max-pooling layer in a branch, the CNN model size is usually very large since the number of 

weights in fully-connected layers significantly increases. Further- more, for multi-focus image fusion, the setting of 32 ×32 is often 

not very accurate because a 32 ×32 patch is more likely to contain both focused and defocused regions, which will lead to undesirable 

results around the boundary regions in the fused image. When the patch size is set to 8 ×8, the patches used to train a CNN model is 

too small that the classification accuracy cannot be guaranteed. Based on the above considerations as well as experimental tests, we 

set the patch size to 16 ×16 in this study. 
Fig. 2 shows the CNN model used in the proposed fusion algorithm. It can be seen that each branch in the network has three 

convolutional layers and one max-pooling layer. The kernel size and stride of each convolutional layer are set to 3 ×3 and 1, 

respectively. The kernel size and stride of the max-pooling layer are set to 2 ×2 and 2, respectively. The 256 feature maps obtained 

by each branch are concatenated and then fully-connected with a 256-dimensional feature vector. The output of the network is a 2-

dimensional vector that is fully-connected with the 256- dimensional vector. Actually, the 2-dimensional vector is fed to a 2-way 

soft max layer (not shown in Fig. 2) which produces a probability distribution over two classes. In the test/fusion process, after 

converting the two fully-connected layers into convolutional ones, the network can be fed with two source images of arbitrary size 

as a whole to generate a dense score map [39,43,45]. When the source images are of size H ×W, the size of the output score map is 

(⸢H/ 2⸣ −8 + 1) × (⸢W/ 2⸣ −8 + 1), where ⸢ ⸣ denotes the ceiling operation. Each coefficient in the score map keeps the output score 

of a pair of source image patches of size 16 ×16 going forward through the network. In addition, the stride of the adjacent patches in 

source images is two pixels because there is one max-pooling layer in each branch of the network. 

 
Figure 2: CNN model for fusion process (notice that the spatial size marked in the figure just  indicates the training process) 

c) Training 

The training examples are generated from the images in image set, which contains high quality natural images. For each image 

(converted into grayscale space at first), five blurred versions with different blurring level are obtained using Gaussian filtering. 

Specifically, a Gaussian filter with a standard deviation of 2 and cut off to 7 ×7 is adopted here. The first blurred image is obtained 

from the original clear image with the Gaussian filter. The second blurred image is obtained from the first blurred image with the 

filter, and so on. Then, for each blurred image and the original image, 20 pairs of patches of size 16 ×16 are randomly sampled (the 

patch sampled from the original image must has a variance larger than a threshold, e.g., 25). Let p c and p b denote a pair of clear 

and blurred patches, respectively. It is defined as a positive example (label is set to 1) when p 1 = p c and p 2 = p b, where p 1 and p 

2 are the input of the first and second branch respectively. On the contrary, it is defined as a negative example (label is set to 0) when 

p 1 = p b and p 2 = p c. Thus, the training set finally consists of few positive examples and few negative examples. As with CNN-

based classification tasks [21-26], the softmax loss function (multinomial logistic loss of the output after applying softmax) is used 

as the objective of our network. The stochastic gradient descent (SGD) is applied to minimize the loss function. The weights are 

updated with the following rule 

vi +1 = 0.9·vi − 0.0005 ·α·wi −α·∂L/∂wi,   wi +1 = wi + vi +1, 

where v is the momentum variable, I is the iteration index, α is the learning rate, L is the loss function, and ∂L/∂wi is the derivative 

of the loss with respect to the weights at wi. CNN model is trained using the popular deep learning framework Caffe [28]. The weights 

of each convolutional layer are initialized with the Xavier algorithm [29], which adaptively determines the scale of initialization 

according to the number of input and output coefficients. The biases in each layer are initialized as 0. The leaning rate is equal for 

all layers and initially set to 0.0001. The learning rate manually drop by a factor of 10 when the loss reaches a stable state. The 

trained network is finally obtained after about 10 epochs through the 2 million training examples. The learning rate is dropped one 
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time throughout the training process. One may notice that the training examples could be sampled from real multi-focus image 

dataset rather than just artificially created via Gaussian filtering. Of course, this idea is good and feasible. Actually, we experimentally 

verify this idea by building another training set in which half of the examples originate from a real multi-focus image set while the 

other half are still obtained by the Gaussian filtering based approach. we also construct a validation set which contains 10,000 patch 

pairs from some other multi-focus images for verification. The result shows that the classification accuracies using the above two 

training set with same training process are approximately the same, both around 99.5% (99.49% for the pure Gaussian filtering based 

set while 99.52% for the mixed set). Moreover, from the viewpoint of final image fusion results, the difference between these two 

approaches is even smaller that can be neglected. This test indicates that the classifier trained by the Gaussian filtering based examples 

can tackle the defocus blur very well. An explanation about it is that in our opinion, as the Gaussian blur is conducted on five different 

standard deviations, the trained classifier could handle most blur situations, which is not limited to the situations of five discrete 

standard deviations in the training set, but greatly expanded to a lot of combinations (may be linear or nonlinear) of them. Therefore, 

there is a very large possibility to cover the situations of defocus blur in multi- focus photography. To verify it, here applied a new 

training set which consists of Gaussian filtered examples using only three different standard deviations, and the corresponding 

classification accuracy on the validation set has a remarkable decrease to 96.7%. Furthermore, there is one benefit when using this 

artificially created training set. That is, I can naturally extend the learned CNN model to other-type image fusion issues, such as 

multi-modal image fusion and multi-exposure image fusion. Otherwise, when the training set contains examples sampled from multi-

focus images, this extension seems to be not reasonable. Thus, the model learned from artificially created examples tends to have a 

stronger ability of generalization. To have some insights into the learned CNN model, here provided some representative output 

feature maps of each convolutional layer. The example images shown in Fig. 1 are used as the inputs. For each convolutional layer, 

two pairs of corresponding feature maps (the indices of two branches are the same) are shown in Fig. 3. The values of each map are 

normalized to the range of [0, 1]. For the first convolutional layer, some feature maps captures high- frequency information as shown 

in the left column while some others are similar to the input images as shown in the right column. This indicates the spatial details 

cannot be fully characterized by the first layer. The feature maps of the second convolutional layers mainly concentrate on the 

extraction of spatial details covering various gradient orientations. As shown in Fig. 3, the left and right columns mainly capture 

horizontal and vertical gradient information, respectively. This gradient information is integrated by the third convolutional layer, as 

its output feature maps successfully characterize the focus information of different source images. Accordingly, with the following 

two fully-connected layers, an accurate score map could be finally obtained. 

 
Figure 3: Representative output feature maps of each convolutional layer 

d) Fusion Scheme 

Focus Detection: Let A and B denote the two source images. In the proposed fusion algorithm, the source images are 

converted to grayscale space if they are colour images. Let ˆA and ˆB denote the grayscale version of A and B (keep ˆA = A 

and ˆB = B when the source images are originally in grayscale space), respectively. A score map S is obtained by feeding 

ˆA and ̂ B to the trained CNN model. The value of each coefficient in S ranges from 0 to 1, which suggests the focus property 

of a pair of patches of size 16 ×16 in source images. The closer the value is to 1 or 0, the more focused the patch from source 

image ˆA or ˆB is. For two neighbouring coefficients in S, their corresponding patches in each source image are overlapped 

with a stride of two pixels. To generate a focus map (denoted as M) with the same size of source images, we assign the 

value of each coefficient in S to all the pixels within its corresponding patch in M and average the overlapping pixels. Fig. 

4(a) shows the obtained focus map of the example illustrated in Fig. 1. It can be seen that the focus information is accurately 

detected. Intuitively, the values of the regions with abundant details seems to be close to 1 (white) or 0 (black), while the 

plain regions tend to own values close to 0.5 (gray). 

 
Figure 4: Initial Segmentation (a) Focus Map (b) Binary Segmentation Map 

Initial Segmentation: To preserve useful information as much as possible, the focus map M needs to be further processed. 

In this method, as with most spatial domain multi-focus image fusion methods [25,27,30-33], here we also adopt the popular 

“choose-max” strategy to process M. Accordingly, a fixed threshold of 0.5 is applied to segment M is into a binary map T, 
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which is in accord with the classification principle of the learned CNN model. The obtained binary map is shown in Fig. 

4(b) (please notice the optical illusion in the focus map shown in Fig. 4(a), namely, the gray regions seems to be darker than 

its real intensity in a white background while brighter than its real intensity in a black back- ground). It can be seen that 

almost all the gray pixels in the focus map are correctly classified, which demonstrates that the learned CNN model can 

obtain precise performance even for the plain regions in source images. 

Consistency Verifications: It can be seen from Fig. 4(b) that the binary segmented map is likely to contain some 

misclassified pixels, which can be easily removed using the small region removal strategy. Specifically, a region which is 

smaller than an area threshold is reversed in the binary map. One may notice that the source images sometimes happen to 

contain very small holes. When this rare situation occurs, users can manually adjust the threshold even to zero, which means 

the region removal strategy is not applied. In this paper, the area threshold is universally set to 0.01 ×H ×W, where H and 

W, are the height and width of each source image, respectively. 

 
Figure 5: (a) Initial Decision Map (b) Initial Fused Image (c) Final Decision Map (d) Fused Image 

 Fig. 5(a) shows the obtained initial decision map after applying this strategy. Fig. 5(b) shows the fused image using the 

initial decision map with the weighted-average rule. It can be seen that there are some undesirable artifacts around the 

boundaries between focused and defocused regions. Similar to [27], we also take advantage of the guided filter to improve 

the quality of initial decision map. Guided filter is a very efficient edge-preserving filter, which can transfer the structural 

information of a guidance image into the filtering result of the input image. The initial fused image is employed as the 

guidance image to guide the filtering of initial decision map. There are two free parameters in the guided filtering algorithm: 

the local window radius r and the regularization parameter ε. In this work, we experimentally set r to 8 and ε to 0.1. Fig. 

5(c) shows the filtering result of the initial decision map given in Fig. 5(b). 

Fusion: Finally, with the obtained decision map D, at last calculate the fused image F with the following pixel-wise 

weighted-average rule  

F (x, y) = D (x, y) A (x, y ) + (1 −D (x, y )) B (x, y ) 

The fused image of the given example is shown in Fig. 5(d). 

III. Result 
Since the model has been only trained on the multi-focus image dataset, thus at first investigate the performance of the proposed 

model on fusing multi-focus images. Additionally, we also want to test the effectiveness of the perceptual loss and fusion rules on 

this dataset. In order to achieve the above two purposes, the algorithm is evaluated on the multi-focus image dataset. 
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Figure 6: (a) Input Image A (b) Input Image B (c) Fused Image 

Fig. 6 displays an example of the Lytro dataset, which comprises the fusion results of multifocus image fusion algorithm based on 

deep learning convolutional neural network method. From the result image of CNN algorithm, it can be clearly seen that the fusion 

quality is better, because it uses many processing operations. The main novelty of our method is learning a CNN model to achieve a 

direct mapping between source images and the focus map. Based on this idea, the activity level measurement and fusion rule can be 

jointly generated by learning the CNN model, which can overcome the difficulty faced by the existing fusion methods. CNN mapping 

process starting from source images to the focus map, which is the common core task of various image fusion issues as this map- 

ping process simultaneously involves activity level measurement and comparison (namely, fusion rule). The subsequent techniques 

applied to the focus map could be selected or designed according to the characteristics of a specific fusion task. This is a reasonable 

way to study this topic from our perspective as we believe conventional techniques in related fields are still of high value and should 

not be discarded. In this work, we just employ some popular techniques for multi-focus image fusion issues, so further studies 

following this route could be performed in the future. 

IV. Conclusion 
In this paper, a general method of multifocus image fusion based on convolutional neural network is proposed. The main originality 

of this method is learning a CNN model to achieve a direct mapping between source images and the focus map. Based on this idea, 

the activity level measurement and fusion rule can be jointly generated by learning the CNN model, which can overcome the difficulty 

faced by the existing fusion methods. Finally, this model is designed as a general image fusion structure, thus its performance might 

be limited for fusing a specific type of images. Therefore, one practical way, to improve performance of the CNN based image fusion 

models, is to design the architecture according to the specific characteristics of the target image dataset. 

In future work, we should focus on other image fusion fields, such as medical image fusion. We should design the end-to-end network 

structure based on the imaging characteristics of medical images. Medical image data sets are not like multi-focus images that can 

be acquired using natural images, so we have to design a special medical image-based data set for medical image fusion. 
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